1.	A piece of wire is bent in the shape of a parabola $y = kx^2$ (y-axis vertical) with a bead of mass m	
	it. The bead can slide on the wire without friction. It stays at the lowest	point of the parabola when the
	wire is at rest. The wire is now accelerated parallel to the x-axis with	a constant acceleration a. The
distance of the new equilibrium position of the bead, where the bead can st		can stay at rest with respect to
	the wire, from the y-axis is	[IIT-JEE-2009]

 $(A) \; \frac{a}{gk}$

(B) $\frac{a}{2gk}$

(C) $\frac{2a}{gk}$

(D) $\frac{a}{4gk}$

Fod of bood =) Nos8 = ma Maho = mg. y = Kn²